MNN 使用了ScheduleInfo,以及ScheduleConfig两个类来配置session。
有几个变量需要注意。

allTensors 是mnn中的信息,也是计算图中,所有的中间结果需要的tensor。

schedule的创建

在MNN中tensor,是模型有向图里面的上下OP的中间计算结果。
在创建session时,首先会创建一个schedule,在schedule中初始化常量Tensor,创建Tensor,初始化他们的维度信息等。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
bool Schedule::schedule(ScheduleInfo& scheduleInfo, const Net* net, const std::vector<ScheduleConfig>& configs, const RuntimeInfo& runtimeInfo) {
if (nullptr == net->oplists()) {
MNN_PRINT("Empty net for schedule\n");
return false;
}
if (scheduleInfo.defaultBackend.get() == nullptr && scheduleInfo.allTensors.empty()) {
// Const not init, init it
BackendConfig defaultConfig;
defaultConfig.flags = 4;
scheduleInfo.defaultBackend.reset(runtimeInfo.second->onCreate(&defaultConfig)); // 通过runtimeInfo.second 创建默认的backend 给scheduleInfo
ErrorCode code = NO_ERROR;
initConstTensors(scheduleInfo.allTensors, net, scheduleInfo.defaultBackend.get(), code); //初始化常量Tensor,MNN.fbs 里面的OpType的Const
if (NO_ERROR != code) {
MNN_ERROR("Schedule Const init errorcode = %d\n", code);
return false;
}
}
bool valid = initTensors(scheduleInfo.allTensors, net); //为所有的tensor其分配dim,初始化。MNN中每个tensor都会有一个index,方便操作
scheduleInfo.validForResize = valid;
std::vector<std::shared_ptr<Tensor>>& allTensors = scheduleInfo.allTensors;
std::vector<std::pair<Schedule::BackendCache, std::vector<Schedule::OpCacheInfo>>> result; //初始化 用来存op

for (auto& config : configs) {
Backend::Info compute;
compute.type = getApprociateType(config);
compute.numThread = config.numThread;
if(config.type == MNN_FORWARD_AUTO) {
if(compute.type == MNN_FORWARD_OPENCL || compute.type == MNN_FORWARD_METAL) {
// AUTO set default gpu-mode MNN_GPU_TUNING_FAST
compute.numThread = 16;
}
}
compute.user = config.backendConfig;
auto oplists = _scheduleUnit(net, config, allTensors); //这里输出对应的op 执行顺序
Schedule::BackendCache cache;
cache.info = std::move(compute);
result.emplace_back(std::make_pair(cache, std::move(oplists))); //转入result
}

scheduleInfo.pipelineInfo = std::move(result); //存入pipline

// get all used op's output, drop unused op, won't change op order. always insert all Input Ops
std::vector<const Op*> oplists;
{
for (std::pair<Schedule::BackendCache, vector<Schedule::OpCacheInfo>>& pipeline : scheduleInfo.pipelineInfo) {
for (auto& info : pipeline.second) {
oplists.push_back(info.op);
}
}
}
// set tensors' input/output usage by oplists info
setInputOutputForOps(allTensors, oplists, net->usage() == Usage_INFERENCE_STATIC);

// add output index by config info and outputName
std::unordered_map<std::string, int> tensorNameIndexMap;
for (int i = 0; i < net->tensorName()->size(); ++i) {
tensorNameIndexMap[net->tensorName()->Get(i)->str()] = i;
}
bool userSetOutput = false;
//这里时对应着,比如你想打印一些中间tensor, 就需要在tensormap中根据name找到他们,并当成输出tensor。
for (auto& config : configs) {
userSetOutput = userSetOutput || (!config.saveTensors.empty());
for (const auto& name : config.saveTensors) {
auto iter = tensorNameIndexMap.find(name);
if (iter != tensorNameIndexMap.end()) {
auto t = allTensors[iter->second].get();
if (TensorUtils::getDescribe(t)->usage == Tensor::InsideDescribe::NORMAL) {
TensorUtils::getDescribe(t)->usage = Tensor::InsideDescribe::OUTPUT;
}
scheduleInfo.outputTensor.insert(
std::make_pair(net->tensorName()->GetAsString(iter->second)->c_str(), t));
} else {
MNN_PRINT("Bad outputname: %s\n", name.c_str());
}
}
}
if (net->outputName()) {
userSetOutput = userSetOutput || net->outputName()->size() >= 1;
for (int i = 0; i < net->outputName()->size(); ++i) {
std::string name = net->outputName()->Get(i)->str();
auto iter = tensorNameIndexMap.find(name);
if (iter != tensorNameIndexMap.end()) {
auto t = allTensors[iter->second].get();
if (TensorUtils::getDescribe(t)->usage == Tensor::InsideDescribe::NORMAL) {
TensorUtils::getDescribe(t)->usage = Tensor::InsideDescribe::OUTPUT;
}
scheduleInfo.outputTensor.insert(
std::make_pair(net->tensorName()->GetAsString(iter->second)->c_str(), t));
}
}
}
if (scheduleInfo.outputTensor.empty()) {
userSetOutput = false;
}
// add input/output tensor to schedule's input/output
//配置scheduleInfo 记录模型的输入 输出张量
for (int index = 0; index < allTensors.size(); index++) {
auto t = allTensors[index].get();
auto usage = TensorUtils::getDescribe(t)->usage; //usage NORMAL ,INPUT
if (usage == Tensor::InsideDescribe::INPUT) {
scheduleInfo.inputTensors.insert(std::make_pair(net->tensorName()->GetAsString(index)->c_str(), t));
}
if (usage == Tensor::InsideDescribe::OUTPUT && (!userSetOutput)) {
scheduleInfo.outputTensor.insert(
std::make_pair(net->tensorName()->GetAsString(index)->c_str(), t));
}
}
// 是否是静态推理
if (net->usage() == Usage_INFERENCE_STATIC) {
for (auto& pipInfo : scheduleInfo.pipelineInfo) {
pipInfo.first.needComputeGeometry = false;
pipInfo.first.needComputeShape = false;
}
}
// 设置flag needComputeGeometry需要计算 计算图buildConstantTensors
#ifndef MNN_BUILD_MINI
for (auto iter = scheduleInfo.pipelineInfo.begin(); iter != scheduleInfo.pipelineInfo.end();) {
if (!iter->first.needComputeGeometry) {
// For static model don't need check const
iter++;
continue;
}
auto breakIndex = GeometryComputerUtils::buildConstantTensors(iter->second);
if (breakIndex >= 0) {
scheduleInfo.needInputContentForShape = true;
}
#ifdef MNN_SEPERTE_SIZE
if (breakIndex >= 0 && (breakIndex + 1) < iter->second.size()) {
// Split oplist
std::vector<Schedule::PipelineInfo> fuse;
std::vector<Schedule::PipelineInfo> separate;
fuse.insert(fuse.begin(), iter->second.begin(), iter->second.begin() + breakIndex + 1);
separate.insert(separate.begin(), iter->second.begin() + breakIndex + 1, iter->second.end());
oplists.clear();
iter->second = std::move(separate);
iter = scheduleInfo.pipelineInfo.insert(iter, std::make_pair(iter->first, fuse));
iter++;
iter++;
} else {
iter++;
}
#else
iter++;
#endif
}
#endif
return true;
}

配置scheduleInfo 配置模型的输入 输出张量的string,也就是在推理时,我们可以根据输入输出tensor的string来,初始化我们的输入,根据output的名字来读取结果。
从上面代码可以看到,如果输入是静态的化,也就是讲可以确定输入和输出的dim维度信息。那么就不需要在线计算你的中间tensor的大小。

initTensor

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
bool initTensors(std::vector<std::shared_ptr<Tensor>>& tensors, const Net* net) {
bool valid = true;
auto describes = net->extraTensorDescribe();
std::vector<const TensorDescribe*> des(tensors.size());
for (int i=0; i<tensors.size(); ++i) {
// Init all tensor except for const
if (tensors[i].get() == nullptr) {
tensors[i].reset(new Tensor); //虽然这里new 了一个tensor 但是 tensor 内部存储数据的内存 仍然没有分配
TensorUtils::getDescribe(tensors[i].get())->index = i;
// MNN_PRINT("initTensors create tensor:%p, index:%d, backend:%d\n", tensors[i].get(), i, TensorUtils::getDescribe(tensors[i].get())->backend);
}
}
if (describes) {
for (int i = 0; i < describes->size(); i++) {
int index = describes->GetAs<TensorDescribe>(i)->index();
des[index] = describes->GetAs<TensorDescribe>(i);
}
}
//设置Tensor的量化信息
for (int i = 0; i < tensors.size(); ++i) {
if (des[i] != nullptr && des[i]->quantInfo()) {
TensorUtils::getDescribe(tensors[i].get())->quantAttr.reset(new QuantAttr);
auto quant = TensorUtils::getDescribe(tensors[i].get())->quantAttr.get();
quant->scale = des[i]->quantInfo()->scale();
quant->zero = des[i]->quantInfo()->zero();
quant->min = des[i]->quantInfo()->min();
quant->max = des[i]->quantInfo()->max();
// Don't copy datatype, it can be set by backend
}
}
// Set Input Tensor, if the type of input is not the same with ExtraTensorDescribe, use input parameter
// 其实就是设置input 层的tensor,将input op的dim 维度信息 给Tensor
// 对于输入图片是动态的 dim的后的h,w是-1 (猜想)
for (int opIndex = 0; opIndex < net->oplists()->size(); ++opIndex) {
auto op = net->oplists()->GetAs<Op>(opIndex);
if (OpType_Input == op->type()) {
MNN_ASSERT(nullptr != op->outputIndexes());
MNN_ASSERT(op->outputIndexes()->size() == 1);
auto index = op->outputIndexes()->data()[0];
auto tensor = tensors[index].get();
auto& tb = tensor->buffer();
auto inputParam = op->main_as_Input();
if (auto idims = inputParam->dims()) {
for (int i = 0; i < idims->size(); ++i) {
int extent = idims->data()[i];
// dim-0 is batch(when input batch is -1, set it to be 1, ignore other dim)
if (i == 0 && extent == -1) {
extent = 1;
}
if (extent < 0) {
valid = false;
}
tb.dim[i].extent = extent;
}
tb.dimensions = idims->size();
} else {
tb.dimensions = 0;
}
tensor->setType(inputParam->dtype());
TensorUtils::getDescribe(tensor)->dimensionFormat = inputParam->dformat();
TensorUtils::setLinearLayout(tensor);
}
}
if (net->usage() != Usage_INFERENCE_STATIC) {
return valid;
}
//如果模型时静态的就直接初始化Tensor的shape
// static model will set all tensors' shape
//动态的话 resizeTensor中初始化,因为到那个时候Tensor的shape才能根据input来确定
for (int i = 0; i < describes->size(); i++) {
int index = describes->GetAs<TensorDescribe>(i)->index();
des[index] = describes->GetAs<TensorDescribe>(i);
}
for (int i = 0; i < tensors.size(); ++i) {
if (TensorUtils::getDescribe(tensors[i].get())->usage != Tensor::InsideDescribe::NORMAL) {
// Const / Trainable Shape has been inited
continue;
}
auto blob = des[i]->blob();
auto& tb = tensors[i]->buffer();
if (auto idims = blob->dims()) {
for (int d = 0; d < idims->size(); d++) {
tb.dim[d].extent = idims->Get(d);
}
tb.dimensions = idims->size();
} else {
tb.dimensions = 0;
}
tensors[i]->setType(blob->dataType());
}
for (int i = 0; i < tensors.size(); ++i) {
auto blob = des[i]->blob();
TensorUtils::getDescribe(tensors[i].get())->dimensionFormat = blob->dataFormat();
if (auto regions = des[i]->regions()) {
auto& regs = TensorUtils::getDescribe(tensors[i].get())->regions;
TensorUtils::getDescribe(tensors[i].get())->memoryType = Tensor::InsideDescribe::MEMORY_BACKEND;
regs.reserve(regions->size());
for (int r = 0; r < regions->size(); r++) {
auto region = regions->GetAs<Region>(r);
Tensor::InsideDescribe::Region reg;
reg.origin = tensors[region->origin()].get();
reg.src.offset = region->src()->offset();
reg.dst.offset = region->dst()->offset();
for (int d = 0; d < 3; d++) {
reg.size[d] = region->size()->data()[d];
reg.src.stride[d] = region->src()->stride()->data()[d];
reg.dst.stride[d] = region->dst()->stride()->data()[d];
}
regs.emplace_back(std::move(reg));
}
}
}
return valid;
}

计算图oplist的构建

1
2
3
4
5
6
7
8
static vector<Schedule::OpCacheInfo> _scheduleUnit(const Net* net, const ScheduleConfig& configs,
const vector<shared_ptr<Tensor>>& allTensors) {
vector<Schedule::OpCacheInfo> oplists;
vector<const Op*> ops;
generateScheduleGraph(ops, net, configs, allTensors); //import 构建计算图
initPipelineInfosFromOps(oplists, ops, allTensors); //import 初始化pipline 后续计算全部根据pipline
return oplists;
}

schedle的构造函数中的,_scheduleUnit函数很重要。generateScheduleGraph用来生成OPlists,OPlists是个有向无环图,记录着OP的执行顺序。下面是generateScheduleGraph的一部分。

1
2
3
4
5
6
7
8
9
10
11
12
static void generateScheduleGraph(vector<const Op*>& ops, const Net* net, const ScheduleConfig& configs,
const vector<shared_ptr<Tensor>>& allTensors) {
if (configs.path.inputs.empty() && configs.path.outputs.empty()) {
// Use Default Linear schedule
ops.clear();
ops.reserve(net->oplists()->size());
for (int i = 0; i < net->oplists()->size(); ++i) {
auto op = net->oplists()->GetAs<Op>(i);
ops.emplace_back(op); //ops[4]->type() MNN::OpType_ConvolutionDepthwise
}
return;
}

其中主要做的是,将mnn的flatbuffer中的net中的oplist,通过net->oplists()->GetAs<Op>读到程序里面。这样OPlist就基本构建好了。

初始化OP的输入,输出地址

1
2
3
4
5
6
7
8
9
static vector<Schedule::OpCacheInfo> _scheduleUnit(const Net* net, const ScheduleConfig& configs,
const vector<shared_ptr<Tensor>>& allTensors) {
vector<Schedule::OpCacheInfo> oplists;
vector<const Op*> ops;
generateScheduleGraph(ops, net, configs, allTensors); //import 构建计算图
initPipelineInfosFromOps(oplists, ops, allTensors); //import 初始化pipline 后续计算全部根据pipline
return oplists;
}

initPipelineInfosFromOps

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
void initPipelineInfosFromOps(std::vector<Schedule::OpCacheInfo>& infos, std::vector<const Op*>& ops, const std::vector<std::shared_ptr<Tensor>>& allTensors) {
for (const Op* op : ops) {
// MNN_PRINT("initPipelineInfosFromOps, op type:%s, op name:%s\n", EnumNameOpType(op->type()), op->name()->c_str());

Schedule::OpCacheInfo opInfo;
opInfo.op = op;
if (nullptr != op->outputIndexes()) {
auto data = op->outputIndexes()->data();
for (int j = 0; j < op->outputIndexes()->size(); ++j) {
opInfo.outputs.push_back(allTensors[data[j]].get()); // 这里设置OP 的输出tensor
}
}
if (nullptr != op->inputIndexes()) {
auto data = op->inputIndexes()->data();
for (int j = 0; j < op->inputIndexes()->size(); ++j) {
opInfo.inputs.push_back(allTensors[data[j]].get()); // 这里设置OP 的输入tensor
}
}
if (needComputeOp(op)) {
infos.emplace_back(std::move(opInfo));
}
}
}

从这个函数里面可以看出,tensorinputoutput被存入到了opinfo里面。这样op就能找到他的输入地址,和输出地址。

资源的创建

需要强调的是,如果输入是动态的也就是input比如是图片,有的大有的小,务必在推理时,resizeTensor和resizeSession。

1
2
net->resizeTensor(input_cpu,input_cpu->shape());
net->resizeSession(session);

session->resize()其中最重要的是iter->allocMemory(firstMalloc, forbidReplace),足足有两百行。
我们现在有了oplist,和tensor。 但是tenor的物理内存仍然没有创建,Op对应的实现也没有创建比如卷积类等。
allocMemory就是实例化模型中卷积,等等操作,以及tensor的内存分配问题。

Executions的创建

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
static ErrorCode _createExecutions(Schedule::PipelineInfo &mInfo) {
auto &mBackend = mInfo.first.cache.first;
auto &mBackupBackend = mInfo.first.cache.second;
for (auto &info : mInfo.second) {
auto &buffer = info.executeBuffer;
// MNN_PRINT("before resize, mInfo.second size:%lu, command size:%lu,op
// type:%s, op name:%s\n", mInfo.second.size(), buffer.command.size(),
// EnumNameOpType(info.op->type()), info.op->name()->c_str());
for (auto &iterP : buffer.command) {
auto &iter = *iterP;
// Create exe
// Find Cache
bool cached = false;
if (nullptr == iter.execution) {
/** Cache origin execution for fast resize*/
auto exeIter = info.executionCache.find(iter.op);
if (exeIter != info.executionCache.end()) {
iter.execution = exeIter->second;
cached = true;
}
}
//在这个地方会根据OP类型和benckend的类型去实例化 卷积什么的OP
if (nullptr == iter.execution) {
iter.execution.reset(
mBackend->onCreate(iter.inputs, iter.outputs, iter.op));
}
//如果上面的代码没有成功,也就是说上面的代码不支持这个操作,则使用备用的banckend
if (nullptr == iter.execution) {
// Try Backup
iter.execution.reset(
mBackupBackend->onCreate(iter.inputs, iter.outputs, iter.op));
if (nullptr == iter.execution) {
if (mInfo.first.reportError) {
MNN_ERROR("Create execution error : %d\n", iter.op->type());
}
return NOT_SUPPORT;
}
}
// invalid means memory alloc failed
if (!iter.execution->valid()) {
iter.execution = nullptr;
iter.execution = nullptr;
return OUT_OF_MEMORY;
}
if ((!cached) && iter.buffer == nullptr &&
(iter.op->type() != OpType_Raster) &&
(iter.op->type() != OpType_BinaryOp)) {
info.executionCache.insert(std::make_pair(iter.op, iter.execution));
}
}
}
return NO_ERROR;
}

在这个地方会根据OP类型和benckend的类型去实例化 卷积什么的OP,如果上面的代码没有成功,也就是说上面的代码不支持这个操作,则使用备用的banckend。mBackend->onCreate()是虚函数,根据OP类型来动态创建。

内存分配

内存分配有三个步骤

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
mBackend->onResizeBegin();
auto curBackend = iter.execution->backend();
if (mAllocInput) {
for (auto t : iter.workInputs) {
auto allocRes = _allocTensor(t, curBackend, mOutputStatic);
if (!allocRes) {
return OUT_OF_MEMORY;
}
}
}
{
for (auto t : iter.workOutputs) {
auto res = _allocTensor(t, curBackend, mOutputStatic);
if (!res) {
return OUT_OF_MEMORY;
}
}
}
mBackend->onResizeEnd();

_allocTensor 会分别调用backend的 OnAccquire来实现。比如OpenCLBackend::onAcquire 之后在介绍backend时再详细介绍。